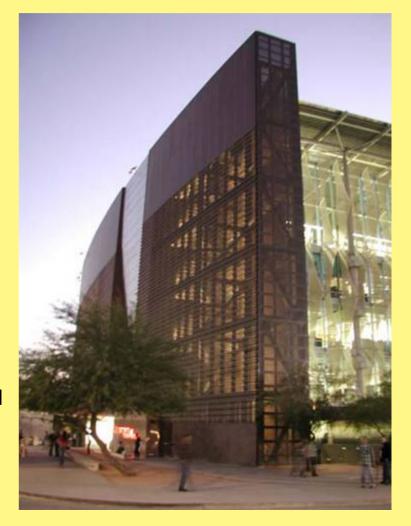
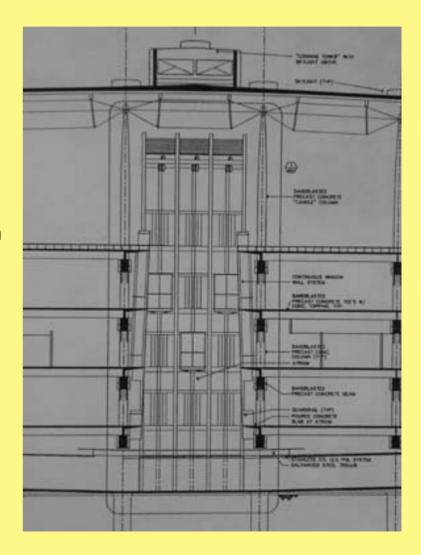
Agents of Change Investigation



roger ota. diane armpriest. rob pena. megan compton. harvey bryan. jennifer johnson. robert rayner

The Building

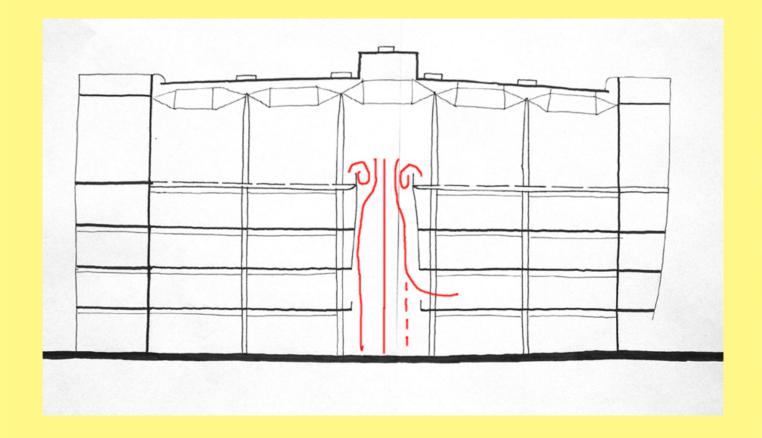
- 5-story building with central atrium;
- pre-cast concrete frame;
- 12 inch concrete wall with perforated copper screened service area to the exterior on east & west side;
- north & south shaded glass curtain wall.
- 5th Floor: Underfloor displacement ventilation
- 2nd Floor: Variable Air Volume, ceiling delivery and return (mixing)

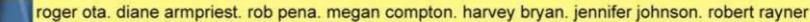


roger ota. diane armpriest. rob pena. megan compton. harvey bryan. jennifer johnson. robert rayner

Preliminary Observations

Questions:


- What are the air movement patterns in the atrium?
- Does heated air flow up the stack of a five story atrium?
- Does chilled air from the fifth floor flow spill down into the atrium?
- Are temperatures uniform across the atrium section at each floor?
- Are temperatures uniform vertically in the atrium?
- Is air moving both up and down the atrium.



Hypothesis

Air moves both up and down across the atrium section.

Methodology

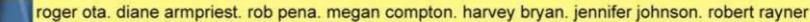
1. Measure dry bulb temperatures across the atrium section at the 2nd and 5th floors.

Five temperature HOBOS were attached to a line strung across the atrium section at the 2nd and 5th levels.

roger ota. diane armpriest. rob pena. megan compton. harvey bryan. jennifer johnson. robert rayner

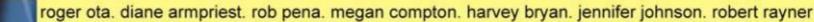
Methodology

2. Use feathers to visualize air movement in the atrium.

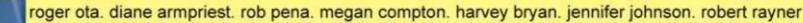


Five colored feathers were attached to a line stretched across the atrium opening at the 5th level. The feathers at each location were observed and timed as they fell.

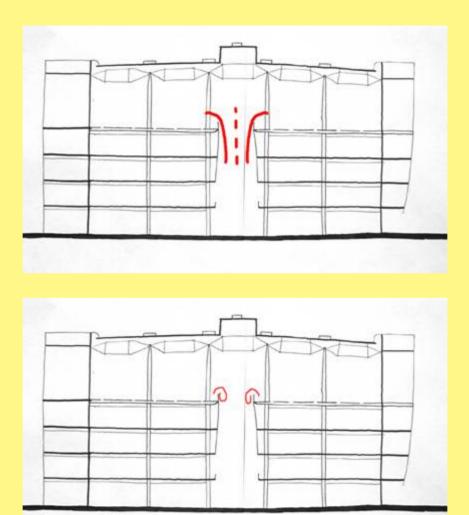
Methodology

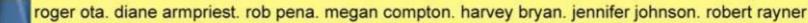

3. Use powder to visualize air movement in the atrium.

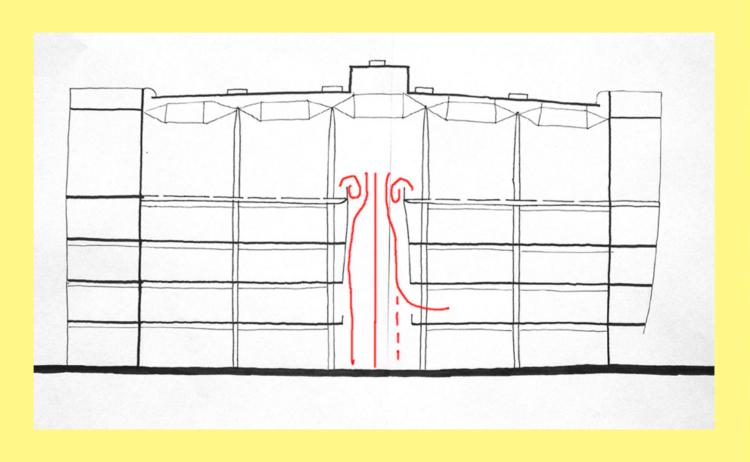
A chalk-line was modified with talcum powder, was stretched across the atrium and then snapped to create a "powder puff".


Methodology

4. Use smoke to visualize air movement in the atrium.

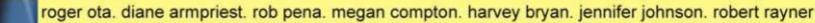



A smoke stick was attached to a line and moved across the atrium opening at the 5th level.


Air-flow Data

Air-flow Data

Analysis and Conclusions


- Generally, air movement moved in one direction: down
- Air movement was slightly faster toward the center of the atrium.
- The atrium is working as an active plenum for the building.
- Air temperatures were within a two-degree range with a slight east-west variation.
- The 2nd floor is short-circuiting the return effect.
- The air was moving NW as it fell, particularly at the 2nd floor.
- A local back-eddy exists at the balcony edge on the 5th floor.

in the crystal canyon

Further Study

Variables to test:

- Time of year
- Day vs. Night
- Variation across plan (elevator to outside edge)
- HVAC Variations

Group E

