Woods Hole Research

AUDITORIUM

D0 300000000 00000

Center

leam

'A' Team:

Nibedita Das, Kansas St Moses Ling, Penn State Bob Crowell, UVa Greg Daly, Onset Jeff Dennis, Onset Kathy Bevers, UOr Walter Grondzik, FAMU

Introduction

Indoor air quality is lower at the upper level than at the basement level during occupied hours when the building is naturally ventilated.

- <u>Indoor Air Quality</u> as determined using CO₂ levels as a surrogate indicator of contaminants, with acceptable limit of 1000 ppm max
- <u>Natural Ventilation</u> ventilation by means of openings in the building envelope

Upper Level

• Used indoor air exfiltrates

Basement

• Fresh outdoor air infiltrates

Hypothesis

Equipment List

- Onset Hobo data loggers (temp, CO₂)
- Engelhard CO₂ meter
- Testo velocity stick (anemometer)
- 'Tiny' bubbles
- Scott's single-ply toilet paper

Methodology & Equipment List

Methodology

Woods Hole Research Center Team A

HOBO Placement:

- HOBOs launched to collect temperature and relative humidity readings every 5 minutes
- HOBOs placed on a string at 6 foot increments from basement to 2nd floor in the open stairwell.

CO₂ Meters:

- Connected to HOBOs collecting CO₂ readings every 5 minutes
- CO_2 meters placed in 3 positions: basement conf. rm, 2nd floor office, and common area in first floor.

Methodology & Equipment List

Methodology

Woods Hole Research Center Team A

Velocity Stick:

• Took air velocity measurements at open windows.

Toilet Paper:

• Held in front of open windows and at cracked-open doorways.

Methodology & Equipment List

Building Operations

- ERU's for Basement Conf Rm & Floors 1/2/3 are not operating.
- Bathroom exhaust fans are operating.
- Doors at stairwell are typically propped open.
- At the beginning of the work day during the case study, windows were not opened by the building occupants. In order to test the hypothesis, Team A opened various windows.

Measured Data

- Temperature gradients in the stairwell
- CO₂ levels
- Velocity readings
- 'Tiny' bubbles
- Direction of airflow

Ŷ

Woods Hole Research Center Team A

Temp Gradient Profile in Stairwell

Overnight Temp Gradient Profile in Stairwell

CO₂ Levels:

• Max levels occurred successively from the basement conf rm to the 2nd floor office.

Airflow:

Woods Hole Research Center Team A

• We confirmed that air flows through the building in the direction we originally thought.

Airflow:

Woods Hole Research Center Team A

Data & Analysis

Summary

- A temperature gradient exists.
- Temperatures in the stairwell remain stable overnight.
- A stack effect brings air in at the basement and out the 2nd floor window.
- CO₂ levels can exceed 1000 ppm.
- Opening windows lowers CO₂ levels.

Conclusions:

• Temperature gradients in the addition stairwell seem to provide sufficient inducement for stack effect

• The flow of natural ventilation air was inward at the basement conference room and outward at the 2nd floor office.

• CO_2 levels fall to near outdoor ambient levels overnight when the building is unoccupied, windows are closed, and ventilation systems are de-energized.

• CO_2 levels quickly climb above the recommended 1000 ppm level when the building is occupied and windows are closed.

• Upper floor occupants may not benefit from open windows.

Summary & Conclusions

The Design Lesson Learned:

• Natural ventilation is a complex process to model and monitor (as Walter predicted).

Design Lessons Learned

Other Design Lessons Learned:

- Natural ventilation can be effective for providing comfortable environments with good air quality.
- Openings at the top of the building really enhance the flowthrough of natural ventilation.
- People do not necessarily notice or are bothered by high CO₂ levels.
- Given the choice, people do not necessarily open their windows for natural ventilation. This might be affected if overhangs at the windows were provided.
- They do enjoy the views afforded by the windows.